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Abstract
Stokes waves on the surface of a layer of an ideal fluid are studied. The
nonlinear Schrodinger equation (NSE) for the envelope of the first harmonic
and the equation for zero harmonic are extended with allowance for full linear
dispersion. To investigate modulational instability (MI) of Stokes waves, we
derive a quartic equation for the perturbation frequency without the traditional
approximation for the motion of mean current with a group speed on the
frequency of fast filling. The interaction of the four roots of this equation is
shown to result in the occurrence of MI bands not described by the NSE. The
analysis of the obtained expressions demonstrates that the limit kh = 1.363
(where h is the fluid depth and k is the wave number) found by Benjamin and
Feir (and also by Whitham and then by Hasimoto and Ono) for the transition
between the states of modulationally stable and unstable liquid is valid only
in the limiting case of small amplitudes of unperturbed waves and small wave
numbers of the perturbation wave.

PACS numbers: 05.45.−a, 05.45.Yv, 47.35.+i

Modulational instability (MI) is the growth of modulations of steady oscillating nonlinear
waves under the action of small harmonic perturbations. This is a widely observed
phenomenon related to wave propagation in various media. In the case of gravity waves
on the fluid surface, studying the modulational instability is of high importance in view of the
conjecture that the occurrence of the so-called freak waves in open seas is a result of long-term
MI evolution [1]. The bibliography on ‘freak waves’ and ‘modulational instability’ can be
found by using a web search engine.
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When an impulse of rapidly oscillating waves propagates on the surface of an ideal fluid
(Stokes waves), the amplitude A of the envelope of the first harmonic of the free surface
profile η = 1

2A exp(i(kx − ωt)) + c.c. and the amplitude � of the zero harmonic of the
velocity potential (long waves, mean flow) satisfy the system of coupled equations in the
approximation O(ε3) [2–4]
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where ε is a small parameter that characterizes the smallness of the amplitudes A and � and
the slowness of their change in time and space. Interrelation of the first harmonic and mean
flow is described by the last terms of these equations.
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ω = √
gkσ is the carrier wave frequency and g is the acceleration due to gravity.

System (1)–(2) is a model of the interaction of long and short waves. It is used in various
physical problems of nonlinear optics and plasma physics and arises in studies of water waves
[5, 6]. In hydrodynamics, it is called the NSE system with the equation for mean flow (NSE-
mean), and it is also known as the Benney–Roskes system [3] or the Davey–Stewartson-type
system.

One of the possible applications of this system is the problem of modulational
stability/instability described by equation (1) for the fundamental harmonic of rapidly
oscillating waves with the wave length 2π/k under the action of a small harmonic perturbation
with the wavelength 2π/	. It is well known [2, 7–9] that, when 	 is much smaller than k,
gravity waves are stable for kh < 1.363. For kh > 1.363, two-dimensional Stokes waves
are unstable in some range 0 < 	 < 	0(kh) and stable again when 	 > 	0(kh). This is a
well-known fact, and thresholds like kh = 1.363 were obtained for some other wave types
[10]. Instability implies that perturbations grow until they are stopped by the stabilization
mechanism due to the increasing effect of nonlinearity and dispersion.

Note that all the above-listed results were obtained with the assumption of small 	 (the
so-called Benjamin–Feir instability). On the other hand, the problem on the MI of Stokes
waves is considered not only for small wave vectors of harmonic perturbation. For example,
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the perturbation wave numbers 	 were arbitrary in the numerical studies of class II MI
[11, 12] and in the studies based on Zakharov’s equations [13].

If we raise the question of the modulational stability of Stokes waves when the wavelength
of harmonic perturbation is of the same order as the wavelength of the carrying wave, our
procedure should be similar to that of Hasimoto and Ono, but it should differ in two essential
points:

Point 1. Departure from the widely accepted assumption that a potential of zero harmonic
depends on x and t in combination x − cgt, where cg = ∂ω

∂k
is the group velocity on the

frequency of the first harmonic A [14].
Point 2. The generalization of system (1)–(2) should be made by taking into account all

the linear terms.
Here we give a more detailed explanation.
Point 1. To depart from the approximation of small κ , one should depart from the

assumption that the zero harmonic of the potential depends on x and t in a combination
x − cgt . This assumption is especially met when NSE is derived from system (1)–(2) in order
to reduce the system to one equation. Some authors call it the transition into the frame that
moves with the group velocity cg of linear waves, and others argue with forcing action of the
third term in (2) which really evolves in time with the group velocity cg .

In the specific case of not small wave numbers 	, a group velocity cg of pure gravity
waves on a surface of a fluid comes nearer to a velocity long wave c0 and the assumption
about driving a zero harmonics with a group velocity cg becomes justified, i.e. the substitution
∂�
∂t

= −cg
∂�
∂x

into equation (2) for small 	 can be done. Note that, as proved in [15], a zero
harmonic � depending on x and t only through x − cgt is not a hypothesis, but it is a property
system involving the equations originating from its derivation, which for us concerns the case
of long wavelength modulation instability.

However, in the case of arbitrary wave numbers 	 of the perturbation wave, the assumption
may be incorrect. The groundlessness of the above-mentioned assumption is discussed in
[16, 17]. In [18], it is shown that originating at replacement of ξ = x − cgt additional items
is necessary to take into account in the next approximation on ε at deriving the NSE of the
fourth order. The possibility for simplification of equation (2) and for the closure of system
(1)–(2) was considered in the series of papers [15, 16, 19, 20].

The departure from the above-mentioned assumption means impossibility of replacement
∂�
∂t

= −cg
∂�
∂x

, and it means impossibility of closure of the system (1)–(2) in NSE. That puts in
doubt the invariance of the value kh = 1.363, since upon application of this replacement (for
example in [2]), equation (2) is integrated, a derivative ∂�

∂x
from (2) substitutes in (1), which

then transforms into the usual NSE

i

(
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+ qA2A = 0, (3)

where
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g
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0 − C2

g

)
. (4)

As q changes sign from positive to negative at kh = 1.363 and as NSE has soliton solutions
under zero boundary conditions at pq > 0, and p < 0 for all kh, NSE (3) cannot have soliton
solutions if kh < 1.363. That Stokes waves are stable at kh < 1.363 follows also from the
expression for increment MN obtained in [2] on the basis (3)

Im � = 	
(
2pqA2

0 − 	2p2) 1
2 , (5)

containing the same expression pq.
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Point 2. To reconstruct the amplitude equations one should use several different small
parameters. In nonconservative media taking account of terms of the basic order on dispersion
and nonlinearity the natural small parameter describing proximity of a system from a critical
state is usually used. Introduction of the second small parameter is necessary taking account
of terms of higher order [21] (equation (3.2) and after). In a conservative system introduction
of two independent small parameters which characterize the smallness of the amplitudes and
the slowness of their change in space was produced, for example, in [22] for Stokes waves on
a surface of a deep fluid. However, when these methods are used strictly, high-order linear
terms should be taken into account together with high-order nonlinear terms. Since taking
into account nonlinear terms to high order is a complicated technical problem, high-order
linear terms are also neglected and their contribution is thereby underestimated. For example,
the instability region on the plane of two wave vector components turns out to be non-closed
when only the parabolic dispersion is taken into account (ordinary NLS). This corresponds to
the unbounded increase of energy as the wave vectors of the disturbing wave increase. On the
other hand, taking into account the cubic dispersion (while freezing the order of nonlinearity)
results in the corresponding turn of the instability curve, and taking into account all the linear
terms results in the closed curve (the Philips eight). In our study, taking into account all
the linear terms in both equations leads to the solid curves in figures 1 and 2 instead of the
dashed curves which are obtained when only the first linear term is taken into account. New
dispersion curves (due to the above-mentioned point 1) attract each other in the region which
is shifted to smaller wave numbers as compared to the case when only several linear terms are
considered [14].

In other words, one has to go beyond the spectrally narrow approximation of the NSE
type when considering wide-band wave trains. The linear terms are all naturally taken into
account in the Zakharov equations [23, 24] and in the Benney–Luke–Milewski equations [25].
So, the generalization of system (1)–(2) is made here by adding to it all linear terms. Such
an addition for system (1)–(2) was produced in [26] for a special case of an indefinitely deep
fluid, and at the rejection of the time derivative in (2).

The account of all linear terms in (1)–(2) within a departure from connection x and t in a
combination x − cgt at description of MI of Stokes waves for fluid layer is the basic purpose
of the given work.

For the first equation of system (1)–(2) introduction of all linear items will be carried out
by replacement of the second and third items by the infinite sum

£A = icg

∂A

∂x
+ p

∂2A

∂x2
− i

1

6

∂3ω

∂k3

∂3A

∂x3
− 1

24

∂4ω

∂k4

∂4A

∂x4
+ · · · .

For adding the remaining linear terms to the linear item c2
0

∂2�
∂x2 of the second equation of

system (1)–(2) we shall understand that equation (2) at the deduction (1)–(2) by the method
of multiple scales [4] is the so-called compatibility condition. According to the alternative of
Fredholm in approximation (ε3) it could be presented as [16]

∂2 

∂t2
+ g

∫ 0

−h

∂2 

∂x2
dz − ν

∂

∂x
AA = 0, (6)

and it is important that with prolongation of the asymptotic procedure only nonlinear terms
are accumulated, i.e. the complete account of the linear terms (2) contains in the second term
(6). Here  is the whole potential zero harmonic, while � is the potential of zero harmonics
only of the first order of asymptotic procedure of method of multiple scales [4]:

 = � + ε� + ε2 ∂2�

∂x2
(z + h)2.
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After transition to the new function  instead of �, the extended system (1)–(2) looks like

i
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System (7)–(8) has the homogeneous solution on x that describes the unperturbed Stokes wave

A = A0 eiαt ,  = 0,

where α = q̃A2
0 and the amplitude A0 does not depend on coordinates and time. Let us

introduce a perturbation (a is the complex one, and ϕ is a real one)

A = (A0 + εa) eiαt ,  = εϕ.

System (7)–(8), being linearized in ε, looks like
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(9)

We represent the solution of the linear system of integral differential equations (9) as

a = a0 eiθ + b0 e−iθ , θ = 	x − �t

φ = (ψ1 eiθ + ψ2 e−iθ )
cosh 	(z + h)

cosh 	h
.

Substituting it into (9), we obtain the linear system of algebraic equations(
� − ω(k + 	) + ω(k) + q̃A2

0

)
a0 + q̃A2

0b0 + i(µ� − k	)A0ψ1 = 0(
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0
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iν	A0(a0 + b0) + (�2 − ω2(	))ψ1 = 0

iν	A0(a0 + b0) − (�2 − ω2(	))ψ2 = 0,

Eliminating ψ1 and ψ2 we obtain[
� − ω(k + 	) + ω(k) + q(�)A2

0

]
a0 + q(�)A2

0b0 = 0[
� + ω(k − 	) − ω(k) − q(�)A2

0
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b0 − q(�)A2
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where

q(�) = q̃ +
k	 − µ�

ω2(	) − �2
ν	. (10)

Equating the determinant to zero gives the equation for the perturbation frequency �:

(� − δ)2 = �2 − 2q(�)A2
0�, (11)

where

� = 1
2 [ω(k + 	) + ω(k − 	)] − ω(k),

δ = 1
2 [ω(k + 	) − ω(k − 	)].

Taking the account of the only two first terms of linear dispersion on the carrier frequency in
(1) and the first term of linear dispersion of long waves in (2) we have

δ → cg	, � → p	2, ω(	) → c0	. (12)



L534 Letter to the Editor

Equation (11) can be presented as

[(� − (δ − �)][(� − (δ + �)][ω(	) − �][ω(	) + �]

= −2(̃q(ω2(	) − �2) + (k	 − µ�)ν	)A2
0�, (13)

which illustrates the interaction of four roots of the dispersion equation (11). At small
nonlinearity in the right-hand part of (13) these four roots correspond to branches 1, 2, 3, 4 in
figures 1 and 2.

Taking into account (10), we get

�4 − 2δ�3 − (
�2 − 2̃qA2

0� + ω2(	) − δ2
)
�2 + 2

(
δω2(	) + 	µνA2

0�
)
�

+
((

�2 − 2̃qA2
0� − δ2

)
ω2(	) − 2k	2νA2

0�
) = 0. (14)

Let us make the parameters of the problem dimensionless:

�̂ = �

ω
, �̂ = �

ω
, δ̂ = δ

ω
, ω̂(̂	) = ω(	)

ω
, 	̂ = 	

k
, Â0 = kA0.

The result of numerical solution of the normalized equation (14) is shown in
figures 1 and 2. Two new factors taken into account in this work result in the following
peculiarities.

(1) The departure from the assumption that the potential of zero harmonic depends on x
and t in the combination x − cgt follows into occurrence of the third and fourth factors in (13)
with the dispersion relation, common for long waves and therefore (13) describes interaction
of not only 1 and 2 waves (at small 	—Benjamin–Feir instability), but also, for example, of
branches 1 and 3—of one more instability. In this connection let us remark that the equation
similar to (11) for the characteristic velocity �/	 has been obtained by the method of the
averaged Lagrangian [8] (equation (56)). To simplify the analysis of the fourth-order equation
solutions on � in the assumption of small A0 and 	, the second term in [8] was neglected and
into the third term the relation �/	 = cg was substituted. The quadratic equation obtained
in such a way has a solution whose imaginary part exists only at small wave vectors of
perturbation 	 and does not exist for any 	, if kh < 1.363. Thus the behaviour analysis of
solutions of the secular equation demonstrated in [8] concerns in essence only the case of
infinitesimal A0 and small 	 and cannot be applied to the explanation of MI occurrence in
place of intersection of roots 1 and 3.

(2) Taking account of additional terms of a linear dispersion in the equation for enveloping
and the equation of zero harmonic follows into the exact curvature of four curves instead of
their asymptotical behaviour (12), shown by the dashed lines in figures 1 and 2. In particular,
this course of curves leads to one more intersection of roots 1 and 2, which is not predicted by
the NSE and corresponds in the linear case to taking full account of dispersion to long edges
of the eight of Phillips. The equation of the fourth order (the generalized on 3D—a case and
including the surface tension) has been obtained by a variation method in [27], but without
taking into account all linear dispersion. Therefore, it cannot be applied for explanation of the
MI band at that point where curves 1 and 2 intersect a second time and their asymptotes shown
by the dotted line intersect only at small 	, i.e. they describe only MI of Benjamin–Feir.

The equation of the fourth order for � taking complete account of a linear dispersion
has been obtained in [28] from Zakharov equations in the ε3 approximation. For deriving MI
criteria it has been simplified with the assumption of small A0 into the second-order equation
for a small number of deviation � from the curve � = 0, but has not been solved numerically.

The peculiarity of the given work is that the secular equation of the fourth order close to
that obtained by the Hamilton method in [28] is deduced from the NSE system generalized
here with mean flow. Numerical calculations show that the Stokes waves have instability in
the region 	 � k in addition to the Benjamin–Feir instability at small 	.



Letter to the Editor L535

1

2a

1a

3a

3

21

4

3

2
1

^ΩRe

^k

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

3

22

1

1

1

^ΩIm

^k

–0.1

0

0.1

0.5 1 1.5

1

2a

1a
3a

3

21

4

3

2
1

^ΩRe

^k

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

3

22

1

1

1

^ΩIm

^k

–0.1

0

0.1

0.5 1 1.5

Figure 1. Re �̂, Im �̂ for kh = 10 and kh = 2 at Â0 = 0.2.

We did not investigate the long-term evolution of unstable waves. It may differ from the
long-term development of Benjamin–Feir instability, since it is described by system (7)–(8)
rather than the NSE. Note that the simplified version system (1)–(2) is solved by the method
of the inverse scattering problem [29].

When kh = 1.363, the Benjamin–Feir instability disappears, while the MI band we found
at κ � k does not vanish.

For the determination of kh and 	̂, at which equation (14) has the imaginary part which
is distinct from zero the expression for frequency of perturbation �̂ = Re �̂ + i Im �̂ has been
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Figure 2. Re �̂, Im �̂ for kh = 1.363 at Â0 = 0.2.

substituted into (14). After separations of real and imaginary parts the resultant of the system
of two nonlinear algebraic equations gives the obtained equation for (Im �̂)2. Retaining in it
the items with degrees not higher than Â2

0, as the theory is weakly nonlinear, it is possible to
obtain for (Im �̂)2 the basic term and the first correction on Â2

0. The basic term is

(Im �̂)2 = −
(

�̂2 − 2�̂

(
Q̃ +

2σ 2N2

ω̂2(̂	) − δ̂2

))
. (15)

Tabulation of the expression for �̂ in association from kh and 	 shows that it could be
with both signs that differs from the approximation taking account of only first terms of linear
dispersion, when �̂ → P 	̂2 and P < 0 for all kh.

Conclusion. By taking into account points (1) and (2) we obtained the quartic equation for
the frequency of the perturbation wave, which depends on wave number 	. Numerical analysis
of the imaginary part of four solutions to this equation shows that there is MI at 	̂ � 1 in
addition to the BF instability at small 	̂. This instability does not disappear at kh < 1.363, in
contrast to BF MI. The description of this instability is related to taking into account the effect
of the mean flow more thoroughly. This fact suggests that the expected MI can evolve into
wave structures intermediate to NSE envelope solitons and solitary waves on shallow water.
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